Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
نویسندگان
چکیده
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
منابع مشابه
Toward Understanding “the Ways” of Allosteric Drugs
The opening line of Tolstoy’s famous Anna Karenina, “All happy families are alike; each unhappy family is unhappy in its own way”, has many parallels to allosteric drugs. Traditionally, drugs targeting enzyme active sites or receptor orthosteric sites in some sense have similar mechanisms of actionthat is, they “act alike”. However, allosteric drugs, or drugs that alter target activity by bind...
متن کاملProfessional rational drug and biological product design methods based on chemoinformatics as a novel science
Background: The use of new technologies in the field of drug discovery and development plays an important role in introducing new and effective drugs, optimizing the properties of existing drugs and, in general the development of various drug-dependent industries, as well as the general health of human, animal and plant communities. These methods provide new drugs at...
متن کاملRecent computational advances in the identification of allosteric sites in proteins.
Allosteric modulators have the potential to fine-tune protein functional activity. Therefore, the targeting of allosteric sites, as a strategy in drug design, is gaining increasing attention. Currently, it is not trivial to find and characterize new allosteric sites by experimental approaches. Alternatively, computational approaches are useful in helping researchers analyze and select potential...
متن کاملRational Design, Synthesis and Computational Structure-Activity Relationship of Novel 3-(4-Chlorophenyl)-5-(3-Hydroxy-4-Ethoxyphenyl)-4,5-Dihydro-1H-Pyrazole-1-Carboxamide
Densely functionalized 3-(4-chlorophenyl)-5-(3-hydroxy-4-etoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized in an expedient manner through specification and transamidation respectively, of ester-functionalized pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole scaffold were adjusted to optimize inhibition of protein kina...
متن کاملUse of Allosteric Targets in the Discovery of Safer Drugs
The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Conse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 116 شماره
صفحات -
تاریخ انتشار 2016